f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ntc

1

NAG C Library Function Document

nag zunghr (f08ntc)

Purpose

nag_zunghr (f08ntc) generates the complex unitary matrix ¢ which was determined by nag zgehrd
(f08nsc) when reducing a complex general matrix A to Hessenberg form.

2

Specification

void nag_zunghr (Nag_OrderType order, Integer n, Integer ilo, Integer ihi,

3

Complex a[], Integer pda, const Complex tau[], NagError *fail)

Description

nag_zunghr (f08ntc) is intended to be used following a call to nag zgehrd (f08nsc), which reduces a
complex general matrix A to upper Hessenberg form H by a unitary similarity transformation:

A =QHQ". nag zgehrd (f08nsc) represents the matrix Q as a product of i,; — i;, clementary reflectors.
Here 4;, and 7;,; are values determined by nag_zgebal (f08nvc) when balancing the matrix; if the matrix has
not been balanced, i;,, = 1 and i;; = n.

This function may be used to generate () explicitly as a square matrix. () has the structure:

I 0 0
Q=10 Qn 0
0 0 I

where (),, occupies rows and columns 7, to iy;.

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5  Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

n — Integer Input
On entry: n, the order of the matrix Q).

Constraint: n > 0.

ilo — Integer Input
ihi — Integer Input

On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag zgehrd
(f08nsc).

Constraints:

ifn>0, 1 <ilo <ihi<n;

[NP3645/7] f08ntc.1



f08ntc NAG C Library Manual

if n =0, ilo =1 and ihi = 0.

5: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag zgehrd
(f08nsc).

On exit: the n by n unitary matrix Q.

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

7: tau[dim| — const Complex Input
Note: the dimension, dim, of the array tau must be at least max(1,n — 1).

On entry: further details of the elementary reflectors, as returned by nag_ zgehrd (f08nsc).

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

NE_INT_3

On entry, n = (value), ilo = (value), ihi = (value).
Constraint: if n > 0, 1 <ilo < ihi < n;
if n=0, ilo =1 and ihi = 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f08ntc.2 [NP3645/7]



f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ntc

7  Accuracy
The computed matrix @ differs from an exactly unitary matrix by a matrix E such that
1], = O(e),

where ¢ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately %q{ where q = iy; — .

The real analogue of this function is nag_dorghr (f08nfc).

9  Example

To compute the Schur factorization of the matrix A, where

-3.97-5.04¢ —4.11+3.70¢ —-034+1.01z 1.29 —0.86¢
0.34 — 1.50¢ 1.52 — 0.43¢ 1.88 —5.38; 3.36 + 0.65¢
331 —-3.85  2.50+3.45¢ 0.88 —1.087 0.64 —1.48:

—1.10 4+ 0.82% 1.81 —1.59¢ 3.2541.33¢ 1.57 —3.44:

A:

Here A is general and must first be reduced to Hessenberg form by nag zgehrd (f08nsc). The program
then calls nag_zunghr (f08ntc) to form (), and passes this matrix to nag_zhseqr (f08psc) which computes
the Schur factorization of A.

9.1 Program Text

/* nag_zunghr (£08ntc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, n, pda, pdz, tau_len, w_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *tau=0, *w=0, *z=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define Z(I,J) z[(J-1)*pdz + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define Z(I,J) z[(I-1)*pdz + T - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08ntc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*["\n] ");

[NP3645/7] f08ntc.3



f08ntc NAG C Library Manual

Vscanf ("%1d%*["\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdz = n;
#else
pda = n;
pdz = n;
#endif
tau_len = n - 1;
w_len = n;

/* Allocate memory */

if ( !(a = NAG_ALLOC(n * n, Complex)) ||

! (tau = NAG_ALLOC(tau_len, Complex)) ||
! (w = NAG_ALLOC(w_len, Complex)) ||

1 (z NAG_ALLOC(n * n, Complex)) )

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf (" ( %1f , %1f )", &A(i,j).re, &A(i,Jj).im);
}
Vscanf ("$*[*\n] ");

/* Reduce A to upper Hessenberg form H = (Q**T)*AxQ *x/
f08nsc(order, n, 1, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Copy A into Z *x/
for (i = 1; 1 <= n; ++1)

{
for (3 = 1; j <= n; ++3j)
{
z2(i,j).re = A(i,]J).re;
Z(i,j).im = A(i,]j).1im;
¥
}

/* Form Q explicitly, storing the result in Z */
f08ntc(order, n, 1, n, z, pdz, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ntc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate the Schur factorization of H = Y*T*(Y**T) and form */
/* Q*Y explicitly, storing the result in Z */

/* Note that A = ZxT*(Z*xT), where Z = Q*Y */
fO08psc(order, Nag_Schur, Nag_UpdateZz, n, 1, n, a, pda,
w, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08psc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

f08ntc.4 [NP3645/7]



f08 — Least-squares and Eigenvalue Problems (LAPACK)

/* Print Schur form */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
"s7.4f",

a, pda, Nag_BracketForm,

Nag_IntegerLabels,

Vprintf ("Error from x04dbc.\n%s\n",

0, Nag_IntegerLabels,

0, 0, &fail);
if (fail.code != NE_NOERROR)
{
exit_status = 1;
goto END;
}

/* Print Schur vectors x/

Vprintf ("\n") ;

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
Nag_BracketForm,
"Schur vectors of A", Nag_IntegerLabels,
Nag_IntegerLabels,

z, pdz,

Vprintf ("Error from x04dbc.\n%s\n",

0, 80

if (fail.code != NE_NOERROR)
{
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE (a);
if (tau) NAG_FREE (tau) ;
if (w) NAG_FREE (w) ;
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08ntc Example Program Data

4

(-3.97,-5.04) (-4.11, 3.70

( 0.34,-1.50) ( 1.52,-0.43

( 3.31,-3.85) ( 2.50, 3.45

(-1.10, 0.82) ( 1.81,-1.59
9.3 Program Results

f08ntc Example Program Results

Schur form

1
1 (-6.0004,-6.9998) (-
2 ( 0.0000, 0.0000) (-
3 ( 0.0000, 0.0000) (
4 ( 0.0000, 0.0000) (

Schur vectors of A

1
1 ( 0.8457, 0.0000) (-
2 (-0.0177, 0.3036) (-
3 (0.0875, 0.3115) (
4 (-0.0561,-0.2906) (-

0]
5
0.
0.0000,

0
0
0
0

0000,

.3613,
.3366,
.6311,
.1045, -

’

.4701,-0.
.0000,

2.
0.
0.

[eNoNoNe]

.1351
.4660
.0000

0,

"e7.4f",

0,

2119
0060
0000
0000

NSNS N

NN N

3339

—~ e~~~

—_~ e~~~

—~ e~~~

O 3OO

[eNoNoNe]

n, n,

"Schur form",

0, 80,

fail.message) ;

n, n,

0,

s&fail);

fail.message) ;

1.29,-0.86)
3.36, 0.65)
0.64,-1.48)
1.57,-3.44)

3
.0438, 0.5124)
.7150,-0.1028)
.9982,-0.9964)
.0000, 0.0000)

3
.1755, 0.2297)
.7228, 0.0000)
.2871, 0.4999)
.2476, 0.0195)

:Value of N

:End of mat

.9097,
.0580,
.2232,
.0023,

.1099,
.0336,
.0944,
.8534,

[eNoNoNe]

f08ntc

rix A

-0.

0.
-1.
-3.

0925
2575
0549
9998

NINANSINGIN N

-0.
0.
-0.
0.

2007
2312
3947
0000

NN

[NP3645/7]

f08ntc.5 (last)



	f08ntc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	n
	ilo
	ihi
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



