
NAG C Library Function Document

nag_zunghr (f08ntc)

1 Purpose

nag_zunghr (f08ntc) generates the complex unitary matrix Q which was determined by nag_zgehrd
(f08nsc) when reducing a complex general matrix A to Hessenberg form.

2 Specification

void nag_zunghr (Nag_OrderType order, Integer n, Integer ilo, Integer ihi,
Complex a[], Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zunghr (f08ntc) is intended to be used following a call to nag_zgehrd (f08nsc), which reduces a
complex general matrix A to upper Hessenberg form H by a unitary similarity transformation:

A ¼ QHQH . nag_zgehrd (f08nsc) represents the matrix Q as a product of ihi � ilo elementary reflectors.
Here ilo and ihi are values determined by nag_zgebal (f08nvc) when balancing the matrix; if the matrix has
not been balanced, ilo ¼ 1 and ihi ¼ n.

This function may be used to generate Q explicitly as a square matrix. Q has the structure:

Q ¼
I 0 0

0 Q22 0

0 0 I

1
A

0
@

where Q22 occupies rows and columns ilo to ihi.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: n – Integer Input

On entry: n, the order of the matrix Q.

Constraint: n � 0.

3: ilo – Integer Input

4: ihi – Integer Input

On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag_zgehrd
(f08nsc).

Constraints:

if n > 0, 1 � ilo � ihi � n;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ntc

[NP3645/7] f08ntc.1

if n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

5: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgehrd
(f08nsc).

On exit: the n by n unitary matrix Q.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

7: tau½dim� – const Complex Input

Note: the dimension, dim, of the array tau must be at least maxð1; n� 1Þ.
On entry: further details of the elementary reflectors, as returned by nag_zgehrd (f08nsc).

8: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_INT_3

On entry, n = hvaluei, ilo = hvaluei, ihi = hvaluei.
Constraint: if n > 0, 1 � ilo � ihi � n;
if n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f08ntc NAG C Library Manual

f08ntc.2 [NP3645/7]

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

kEk2 ¼ Oð�Þ;

where � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 16
3
q3, where q ¼ ihi � ilo.

The real analogue of this function is nag_dorghr (f08nfc).

9 Example

To compute the Schur factorization of the matrix A, where

A ¼

�3:97� 5:04i �4:11þ 3:70i �0:34þ 1:01i 1:29� 0:86i
0:34� 1:50i 1:52� 0:43i 1:88� 5:38i 3:36þ 0:65i
3:31� 3:85i 2:50þ 3:45i 0:88� 1:08i 0:64� 1:48i

�1:10þ 0:82i 1:81� 1:59i 3:25þ 1:33i 1:57� 3:44i

1
CCA

0
BB@ :

Here A is general and must first be reduced to Hessenberg form by nag_zgehrd (f08nsc). The program
then calls nag_zunghr (f08ntc) to form Q, and passes this matrix to nag_zhseqr (f08psc) which computes
the Schur factorization of A.

9.1 Program Text

/* nag_zunghr (f08ntc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */

Integer i, j, n, pda, pdz, tau_len, w_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */
Complex *a=0, *tau=0, *w=0, *z=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define Z(I,J) z[(J-1)*pdz + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define Z(I,J) z[(I-1)*pdz + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08ntc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ntc

[NP3645/7] f08ntc.3

Vscanf("%ld%*[^\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdz = n;

#else
pda = n;
pdz = n;

#endif
tau_len = n - 1;
w_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||

!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(w = NAG_ALLOC(w_len, Complex)) ||
!(z = NAG_ALLOC(n * n, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");

/* Reduce A to upper Hessenberg form H = (Q**T)*A*Q */
f08nsc(order, n, 1, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Copy A into Z */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

{
Z(i,j).re = A(i,j).re;
Z(i,j).im = A(i,j).im;

}
}

/* Form Q explicitly, storing the result in Z */
f08ntc(order, n, 1, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ntc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Calculate the Schur factorization of H = Y*T*(Y**T) and form */
/* Q*Y explicitly, storing the result in Z */

/* Note that A = Z*T*(Z**T), where Z = Q*Y */
f08psc(order, Nag_Schur, Nag_UpdateZ, n, 1, n, a, pda,

w, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08psc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

f08ntc NAG C Library Manual

f08ntc.4 [NP3645/7]

/* Print Schur form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

a, pda, Nag_BracketForm, "%7.4f", "Schur form",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print Schur vectors */
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

z, pdz, Nag_BracketForm, "%7.4f",
"Schur vectors of A", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);
if (w) NAG_FREE(w);
if (z) NAG_FREE(z);

return exit_status;
}

9.2 Program Data

f08ntc Example Program Data
4 :Value of N

(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) (1.29,-0.86)
(0.34,-1.50) (1.52,-0.43) (1.88,-5.38) (3.36, 0.65)
(3.31,-3.85) (2.50, 3.45) (0.88,-1.08) (0.64,-1.48)
(-1.10, 0.82) (1.81,-1.59) (3.25, 1.33) (1.57,-3.44) :End of matrix A

9.3 Program Results

f08ntc Example Program Results

Schur form
1 2 3 4

1 (-6.0004,-6.9998) (-0.4701,-0.2119) (0.0438, 0.5124) (-0.9097,-0.0925)
2 (0.0000, 0.0000) (-5.0000, 2.0060) (0.7150,-0.1028) (-0.0580, 0.2575)
3 (0.0000, 0.0000) (0.0000, 0.0000) (7.9982,-0.9964) (-0.2232,-1.0549)
4 (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (3.0023,-3.9998)

Schur vectors of A
1 2 3 4

1 (0.8457, 0.0000) (-0.3613, 0.1351) (-0.1755, 0.2297) (0.1099,-0.2007)
2 (-0.0177, 0.3036) (-0.3366, 0.4660) (0.7228, 0.0000) (0.0336, 0.2312)
3 (0.0875, 0.3115) (0.6311, 0.0000) (0.2871, 0.4999) (0.0944,-0.3947)
4 (-0.0561,-0.2906) (-0.1045,-0.3339) (0.2476, 0.0195) (0.8534, 0.0000)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ntc

[NP3645/7] f08ntc.5 (last)

	f08ntc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	n
	ilo
	ihi
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

